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Abstract

Background Atopic dermatitis (AD) management is significantly challenging due to the high prevalence, chronicity,
and recurrent nature of the disease, and limited options for its treatment. Human umbilical cord mesenchymal stem
cells (hUC-MSCs) exhibit potential effects against AD; however, the mechanisms underlying these effects remain
largely unexplored.

Methods AD mouse models were established using 1-chloro-2,4-dinitrobenzene (DNCB) and ovalbumin (OVA). The
therapeutic effects of subcutaneously administered hUC-MSCs and their conditioned medium (hUC-MSC-CM) were
evaluated through histopathology, western blotting, PCR, ELISA, and flow cytometry. Mechanistic studies included
RNA sequencing, cytokine arrays, and exosome characterization.

Results Both hUC-MSCs and hUC-MSC-CM significantly alleviated AD-like symptoms, including erythema, epidermal
thickening, and inflammatory cell infiltration in DNCB- and OVA-induced models. There was a decrease in serum Igk
levels and histological analyses confirmed attenuated skin damage in these models. Moreover, neither hUC-MSCs
nor hUC-MSC-CM induced weight loss. Mechanistically, hUC-MSC-CM suppressed neutrophil migration in the skin
and inhibited keratinocyte-derived chemokine (e.g,, CCL5 and CXCL11) secretion. Additionally, hUC-MSC-derived
exosomes reduced chemokine production in keratinocytes, mediated by the STAT3 signaling pathway.

Conclusions This study demonstrated that hUC-MSCs and hUC-MSC-CM ameliorate AD-like symptoms, possibly
through exosome-dependent suppression of the STAT3 signaling pathway and chemokine expression. Furthermore,
hUC-MSC-CM serves as a cell-free alternative to whole-cell therapy, with comparable efficacy, offering novel
mechanistic insights and a potential translational strategy for AD treatment.
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Background

Atopic dermatitis (AD) is a chronic inflammatory skin
condition, often described as an “immortal cancer” owing
to its persistent nature and the challenges associated with
its treatment [1]. Overall, 223 million people are affected
by AD worldwide, with a significant incidence of 30%
among children. Moreover, 40% of patients experience
severe symptoms, such as persistent rash, intense itching,
sleep disruption, and comorbidities, including asthma,
depression, and anxiety [2, 3]. AD is the most debilitating
non-fatal skin ailment, imposing significant psychological
and financial strain on patients and their families [4]. Its
complex pathogenesis involves genetic predisposition,
environmental triggers, impaired skin function,
immune dysregulation, and microbial imbalance [5,
6]. These complexities complicate treatment because
the underlying causative factors remain incompletely
understood. Current therapies primarily focus on
symptom management, including the use of emollients,
glucocorticoids, antihistamines, immunosuppressants,
biologics, and small-molecule inhibitors [7-9]. However,
these conventional medications have limitations,
such as unclear mechanisms of action, suboptimal
bioavailability, potential side effects, and limited efficacy
[10, 11]. Consequently, exploring safer and more effective
treatment alternatives to address the unmet needs of
patients with AD is imperative.

Mesenchymal stem cells (MSCs), which can be derived
from various tissues, including the placenta, adipose
tissue, bone marrow, and umbilical cord, exhibit potent
paracrine and immunomodulatory properties [12, 13].
Furthermore, MSC therapy exhibits significant efficacy
in preclinical models of inflammatory skin conditions,
including AD, psoriasis, systemic scleroderma, systemic
lupus erythematosus, and graft-versus-host disease
[14-16]. Human umbilical cord mesenchymal stem
cells (hUC-MSCs) offer several advantages, such as easy
procurement, high purity, abundance, and enhanced
activity. The use of hUC-MSCs circumvents the ethical
concerns associated with stem cell research, minimizes
immune rejection, and mitigates potential harm to donors
and recipients. Allogeneic transplantation of hUC-
MSCs elicits minimal immune responses and reduces
tumorigenic risk without the use of immunosuppressants
[17]. Although only a few studies have been carried out
on hUC-MSC therapy for AD, current studies highlight
its efficacy [18, 19]. These studies demonstrate that hUC-
MSCs and their derivatives alleviate dermatitis symptoms
and reduce the severity of skin lesions in animal models
of AD [20]. hUC-MSCs also modulate inflammatory
cytokines, including IgE, IL-6, IL-1B, and TNF-q,
while increasing the expression of anti-inflammatory
cytokines such as IL-10 and TGF-B1. A major clinical
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trial in South Korea investigated subcutaneous hUC-
MSC implantation for AD treatment, yielding promising
results [21]. Many patients experienced a decrease in the
Eczema Area and Severity Index (EASI) and the Severity
Score of Atopic Dermatitis (SCORAD), indicating the
potential of hUC-MSCs for AD management. However,
the therapeutic potential of hUC-MSC conditioned
medium (hUC-MSC-CM), a cell-free alternative to hUC-
MSCs, with lower tumorigenicity risk, remains largely
underexplored. Moreover, mechanistic insights into
neutrophil modulation and chemokine networks are
lacking.

This study aimed to elucidate the mechanism of action
of hUC-MSCs in AD treatment in a bit to advance our
understanding of their therapeutic potential in the
pathogenetic context of this disease. Sensitizer-induced
AD mouse models, such as those established using
ovalbumin (OVA) and 1-Chloro-2,4-dinitrobenzene
(DNCB), are widely used in AD research due to their
cost-effectiveness, simplicity, and high reproducibility.
OVA induces allergic inflammation, while DNCB induces
delayed-type hypersensitivity, both effectively inducing
the inflammatory and pathological features of AD. In
both mouse models, hUC-MSCs or hUC-MSC-CM
was administered through subcutaneous injection,
and the extent of skin damage, histological alterations,
and changes in serum IgE levels were subsequently
evaluated. Mechanistic investigations revealed that
hUC-MSCs inhibited the JAK-STAT signaling pathway
in keratinocytes via exosomal mechanisms, suppressed
chemokine expression in these cells, and significantly
reduced neutrophil infiltration in mouse skin, thereby
exerting therapeutic effects.

Methods

Cell culture and treatment

hUC-MSCs and the cell diluents used in this study were
prepared and supplied by S-Evans Biosciences Co., Ltd.
(Hangzhou, China). hUC-MSC:s at the fifth passage were
selected for experimentation. Furthermore, as part of
quality control, hUC-MSC surface marker expression was
immunophenotyped via flow cytometry, as previously
described [22]. Additionally, adipogenic and osteogenic
differentiation assays were conducted to confirm
hUC-MSC phenotypic identity. Human immortalized
keratinocytes (HaCaT), obtained from Meisen CTCC
(Zhejiang, China), were cultured in DMEM containing
10% fetal bovine serum and then incubated at 37 °C in a
5% CO, atmosphere.

hUC-MSC-CM and hUC-MSC-Exo preparation
The same batch of hUC-MSCs was diluted to a
concentration of 2.0x10° cellsymL and cultured in
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serum-free MSC culture medium. After 48 h, the
resulting supernatant was collected and centrifuged
at 3,000 rpm for 10 min to remove cells and debris,
with the clarified supernatant retained. Then, hUC-
MSC exosomes were extracted, and purified using an
extracellular vesicle extraction kit (cell supernatant)
(Umibio, Shanghai, China).

Murine AD model

For the DNCB-induced model, mice were randomly
assigned to three groups (n=6/group) i.e., the control
group, the DNCB group, and either the DNCB+hUC-
MSC or DNCB+hUC-MSCs-CM group in separate
experiments. Mouse dorsal skin hair was shaved, and
200 pL of 1% DNCB (Sigma Aldrich, St. Louis, MO, USA)
was applied to the skin. This treatment was repeated every
two days for a total of four applications. Subsequently,
200 uL of 0.2% DNCB was applied following the same
schedule for an additional four applications. On days
13, 17, 21, and 25, hUC-MSCs (2% 10° cells/mL, 0.2 mL
per administration) were administered by subcutaneous
injection. Alternatively, hUC-MSCs-CM (0.4 mL per
animal) was subcutaneously injected daily from day 10
for 14 consecutive days.

For the OVA-induced mouse model, all mice were
randomly divided into three groups (n=6/group)
i.e., the control group, the OVA group, and either the
OVA+hUC-MSC or OVA+hUC-MSCs-CM  group
in separate experiments. Mouse dorsal skin hair was
shaved, and the skin barrier was disrupted by repeated
application and removal of adhesive tape (8—10 times).
Then, a sterile patch containing 1 pg/pL OVA (Sigma
Aldrich St. Louis, MO, USA) was applied to the dorsal
skin and replaced daily. From day 10, hUC-MSCs
(2x10° cells/mL, 0.2 mL per administration) were
subcutaneously injected into the patch-covered area
every two days for a total of four injections. Alternatively,
hUC-MSCs-CM (0.4 mL per animal) was subcutaneously
injected daily from day 10 for 16 consecutive days.

During the experiment, no anesthesia was administered
to the mice. Instead, all mice were euthanized by cervical
dislocation. Subsequently, serum and skin samples were
collected from the animals for further analysis. Blinding
was not feasible during treatment; however, results were
analyzed in a blinded manner whenever possible.

Cell proliferation assay

Cell proliferation was assessed following established
protocols [23]. Briefly, HaCaT cells were exposed to
various concentrations of Stattic (MCE, New Jersey,
USA) for 48 h. After incubation, the cells were fixed
with 10% (w/v) trichloroacetic acid and stained with
sulforhodamine B (SRB) dye for 30 min. Subsequently,
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the SRB dye solution was dissolved using a 10 mM Tris-
base alkali solution, and the absorbance was measured
using a microplate reader.

Histopathological analyses

To evaluate skin thickening and immune cell infiltration,
skin samples were collected, fixed in 10% formalin,
and embedded in paraffin. Then, 5-um-thick sections
were prepared and subjected to dewaxing, hydration,
hematoxylin dyeing, differentiation, eosin staining, and
dehydration.

Real-time PCR

HaCaT cells were stimulated with TNF-a/IEN-y (10 ng/
mL; Sigma-Aldrich, MO, USA), hUC-MSC-CM (50%,
v/v), hUC-MSC-Exos (20 pg/mL), or Stattic (10 puM)
for 48 h. Overall, RNA was isolated using the TRIzol
reagent (TaKaRa, Tokyo, Japan). cDNA was synthesized
using the QuantiTect Reverse Transcription Kit (Qiagen,
Hilden, Germany) according to the instructions of the
manufacturer. qRT-PCR was performed using the SYBR
Premix Ex Taq (Tli RNase H Plus; TaKaRa, Tokyo, Japan)
on a CFX96 Touch Real-Time PCR Detection System
(Bio-Rad, CA, USA). Table S1 lists the specific primer
sequences used in this study. f-actin or Gapdh served
as a reference gene, and the relative expression of target
genes was calculated using the 274" method.

Western blotting

Tissue and cell samples were collected and lysed on ice
using a lysis buffer. Proteins were extracted using the
1xcell lysis buffer (Promega, USA), and then quantified
using a BCA Protein Assay Kit (Pierce Biotechnology,
Rockford, IL, USA). Proteins (20 pg) in each group were
separated via 10% SDS-PAGE (Invitrogen, CA, USA)
and then transferred onto PVDF membranes. Next,
the membranes were blocked in TBST containing 5%
skim milk and incubated overnight at 4 °C with primary
antibodies, including anti-CD63 (Abcam, Cambridge,
England), anti-TSG101, anti-STAT3, anti-P-STAT3, and
anti-GAPDH (Proteintech, Wuhan, China) antibodies, all
diluted at a 1:1000 ratio. After washing, the membranes
were incubated with secondary antibodies (1:2000,
Invitrogen, Carlsbad, CA, USA) at room temperature
for 2 h. Finally, blots were visualized using an enhanced
chemiluminescence (ECL) system (Beyotime, Nanjing,
China).

Cytokine array

HaCaT cells were cultured in 6-well plates and exposed
to TNF-a/IFN-y (10 ng/mL) or hUC-MSC-CM (50%,
v/v) for 48 h. The resulting supernatant from each group
was collected, and chemokine expression levels in the
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supernatant were determined using the Human Cytokine
Array Kit (R&D Systems, Minneapolis, MN, USA)
according to the instructions of the manufacturer.

Enzyme-linked immunosorbent assay (ELISA)

HaCaT cells were cultured in 6-well plates and exposed
to TNF-a/IFN-y (10 ng/mL) or hUC-MSCs-CM (50%,
v/v) for 48 h. The culture medium was collected and
centrifuged at 1000 g for 20 min. ELISA kits (Elabscience,
Wuhan, China) were used to measure the concentrations
of CCL5 and CXCL11 according to the instructions of
the manufacturer.

Whole blood samples were collected from mice via
orbital extraction. After allowing the blood to coagulate
at room temperature for 30 min, the samples were
centrifuged at 1000 g for 10 min at 4 C, and serum
was collected. Serum IgE levels were determined using
a mouse IgE enzyme-linked immunosorbent assay
kit (Thermo Fisher, Pittsburgh, PA) according to the
instructions of the manufacturer.

Flow cytometric analysis

Cells were isolated from the skin of BALB/c mice and
resuspended in phosphate-buffered saline (PBS; Gibco,
CA, USA) supplemented with 2% FBS. Then, the cells
were incubated with TruStain fcX (anti-mouse CD16/32)
antibodies (BioLegend, CA, USA) and stained with Pacific
Blue anti-mouse CD45, APC anti-mouse CD11b, APC-
Cyanine? anti-mouse CD11c, PE anti-mouse F4/80, FITC
anti-mouse Gr-1, APC-Cyanine7 anti-mouse Ly-6C,
FITC anti-mouse Ly-6G, APC-Cyanine7 anti-mouse
CD49b (pan-NK cells), APC anti-mouse CD3e, BV510
anti-mouse CD4, and FITC anti-mouse CD8 antibodies.
Before flow cytometric analysis, a 7-aminoactinomycin
D (7-AAD) viability staining solution (BioLegend, San
Diego, CA, USA) was added to the suspension to identify
dead cells. Flow cytometry was conducted using a BD
FACSCanto II device (BD Biosciences, USA), and data
were analyzed using the Flow]Jo software.

RNA sequencing

RNA sequencing was outsourced to Hangzhou
Lianchuan Biotechnology Co. Ltd. The general procedure
was as follows: total RNA was extracted from HaCaT
cells treated with or without TNF-o/IFN-y (10 ng/mL;
Sigma-Aldrich, MO, USA) for 48 h, and mRNA was
isolated and purified. The RNA samples were converted
into double-stranded cDNA. After filtering out low-
quality sequences from the raw data using Cutadapt,
valid data were obtained. Hisat2 was used for reference
genome alignment. Based on the alignment results,
Stringtie was used to reconstruct the transcripts and
calculate the expression levels of all genes in each
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sample. Differentially expressed genes were identified
using fold change threshold>2 and q value<0.05
(|log2FC|>1&q<0.05). The Lianchuan Biological Data
Analysis Platform and the KEGG enrichment pathway
analysis were used to evaluate the effects of the DEGs.

Transmission electron microscopy

Exosomes from hUC-MSCs were resuspended in 2%
PFA. The vesicle suspension was applied onto a cover
film, and a copper grid with a Formvar membrane facing
downwards was placed on the suspension. Phosphate-
buffered saline (PBS) was added to the cover film, and
the copper grid was rinsed in the PBS droplet. Then,
the grid was placed on 1% glutaraldehyde and rinsed
eight times in ddH,O. Subsequently, the copper grid was
transferred to a uranyl acetate droplet at pH 7, and then
to a methylcellulose droplet. Excess liquid on the copper
grid was removed using filter paper, and the grid was air-
dried before being placed in a storage box. Images were
captured using a transmission electron microscope at
80 kV.

Nanoparticle tracking analysis (NTA)

Exosomes from hUC-MSCs were rinsed with deionized
water. Next, a Particle Metrix nanoparticle tracking
analyzer (ZetaView PMX 110) was calibrated with
polystyrene microspheres (110 nm). After calibration, the
sample cells were rinsed with 1xPBS buffer (Biological
Industries, Israel). Samples to be analyzed were diluted
with 1 xPBS buffer (BI, Israel) before analysis.

Statistical analyses

Data are expressed as the meantstandard error of
the mean value (SEM) from at least three different
experiments. T-tests and one-way or two-way analysis
of variance (ANOVA) were performed using GraphPad
Prism (GraphPad Software, California, USA) to evaluate
the significance of the results. P-values<0.05 were
considered statistically significant.

Results

hUC-MSC treatment alleviates DNCB- and OVA-induced
AD-like symptoms in mice

We investigated the therapeutic potential of subcutaneous
hUC-MSC injection in a mouse model of DNCB-induced
AD. hUC-MSCs significantly improved skin integrity
in AD model mice by reducing skin symptoms, such as
erythema, dryness, and crust formation, induced by
DNCB (Fig. 1A). Hematoxylin and eosin (H&E) staining
showed that hUC-MSC treatment decreased epidermal
hyperplasia and inflammatory cell infiltration in AD
model mouse skin (Fig. 1B). Additionally, hUC-MSC
treatment increased the expression of levels of keratin
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Fig. 1 hUC-MSC treatment improves DNCB-induced atopic dermatitis-like symptoms in mice. A Diagram showing damage of mouse dorsal

skin following hUC-MSC treatment. B Representative H&E staining photomicrographs of mouse dorsal skin samples from the three groups; scale
bar=200 um. C Western blot images showing Krt1 expression levels in mouse skin tissues. Full-length blots are presented in Supplementary Figure.
D Changes in mouse IgE serum levels. E Changes in mouse body weight. F gRT-PCR analysis of FLG, Krt1, IL-4, and IL-13 mRNA expression in mouse
skin tissues. G Changes in mouse serum IL-4 and IL-6 expression levels as detected through ELISA

1 (Krtl) and filaggrin (FLG), markers of skin barrier
function (Fig. 1C and F). Moreover, as compared to the
control treatment (the untreated AD model group),

hUC-MSC treatment significantly decreased serum
immunoglobulin E (IgE) levels, as well as the levels of key
inflammatory markers and the cytokines, interleukin-4
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(IL-4) and interleukin-6 (IL-6) (Fig. 1D, F, and G). These
findings suggest that hUC-MSC treatment effectively
alleviates DNCB-induced AD-like symptoms in mice. No
weight loss was observed in mice following hUC-MSC
treatment, suggesting the safety of this subcutaneous
administration approach (Fig. 1E).

Similar results were obtained with the OVA-induced
AD model, with hUC-MSC treatment effectively
improving skin damage and reducing epidermal
thickening and inflammatory cell infiltration (Fig. 2A and
B). Immunohistochemical (IHC) analysis revealed that
hUC-MSC treatment increased FLG protein levels and
decreased serum IgE levels in OVA-induced model mice
(Fig. 2C and D). Similarly, no weight loss was observed
in OVA-induced model mice treated with hUC-MSCs
(Fig. 2E).

hUC-MSC-CM treatment alleviates DNCB- and OVA-induced
AD-like symptoms in mice

Studies have confirmed that the therapeutic effect of
mesenchymal stem cells is predominantly mediated
through the paracrine signaling pathway. Thus, we
explored the therapeutic potential of hUC-MSC-CM.
hUC-MSC-CM significantly mitigated skin damage

A

Control

OVA+
hUC-MSCs

Cc

e ‘X;
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(Fig. 3A and C), decreased epidermal thickening, and
suppressed inflammatory cell infiltration (Fig. 3B and D)
in DNCB- and OVA-induced AD models. Additionally,
treatment with hUC-MSC-CM effectively reduced serum
IgE levels (Fig. 3E). hUC-MSC-CM administration did
not induce weight loss in mice in either model (Fig. 3F),
underscoring its safety. Collectively, these findings
demonstrate that hUC-MSC-CM treatment alleviates
AD-like symptoms in DNCB- and OVA-induced AD
mice. This suggests that the therapeutic effects of hUC-
MSCs are mediated by their extracellular secretions via
the paracrine pathway.

hUC-MSC-CM inhibits neutrophil migration in the skin

Immune dysregulation is a key mechanism and
characteristic of AD. Both hUC-MSCs and hUC-
MSC-CM decreased inflammatory cell infiltration in
the skin tissues of AD model mice. Furthermore, we
conducted a flow cytometric analysis on immune cells
extracted from the dorsal skin and blood of DNCB-
induced AD model mice (Supplementary Fig. 1). We
found that there was a significant increase in the
neutrophil population of the skin and blood, and that
monocyte, macrophage, dendritic cell (DC), T cell,
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Fig. 2 hUC-MSC treatment improves atopic dermatitis-like symptoms in OVA-induced model mice. A Diagram showing damage of mouse dorsal
skin following hUC-MSC treatment. B Representative H&E staining photomicrographs of mouse dorsal skin samples from the three groups; scale
bar=200 um. C IHC analysis of FLG expression in mouse skin tissue; scale bar=50 um. D Changes in mouse IgE serum levels. E Changes in mouse

body weight
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following OVA induction. Scale bar=200 um. E Changes in mouse IgE serum levels following hUC-MSC-CM treatment. F Body weight changes

in mice of the two model groups

and natural killer (NK) cell counts remained largely
unchanged or decreased (Fig. 4A and B). Furthermore,
hUC-MSC-CM inhibited the increase in neutrophil
count, specifically within skin tissue (Fig. 4A), with
minimal effects on blood neutrophil level (Fig. 4A).
Consistent with these findings, immunofluorescence
assays showed that hUC-MSC-CM  significantly
reduced neutrophil level in the skin (Fig. 4C). These
findings collectively suggest that hUC-MSCs may exert
therapeutic effects in AD by inhibiting neutrophil
chemotaxis at sites of skin inflammation.

hUC-MSC-CM inhibits keratinocyte-derived chemokine
secretion

Keratinocytes constitute the primary source of
chemokines in the skin. To investigate this, we developed
an in vitro AD model using the HaCaT keratinocyte cell
line. RNA sequencing and KEGG pathway analyses were
performed on RNA extracted from the control and AD
model groups. We found significant activation of several
cytokine-cytokine receptor interaction pathways in the
AD model (Fig. 5A and B). Further analysis revealed
an upregulation of chemokine expression in the model
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of CCL5 and CXCL11 mRNA expression in HaCaT cells
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CXCLS8, CXCL9, CXCL10, and CXCL11 protein levels
in the AD model group, with hUC-MSC-CM effectively
suppressing the expression of these chemokines (Fig. 5D).
For additional validation, CCL5 and CXCL11 were
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selected and their protein and mRNA levels assessed.
ELISA and qPCR results showed a significant decrease in
CCL5 and CXCL11 protein and mRNA levels following
hUC-MSC-CM treatment (Fig. 5E and F). These findings
collectively suggest that hUC-MSC-CM regulates
chemokine activity, potentially representing a pivotal
mechanism underlying its therapeutic efficacy against
AD.

hUC-MSC-Exos inhibit chemokine production

in keratinocytes

Exosomes are crucial paracrine effectors, recognized
for their uniformity and diverse functions in cellular
communication. To further ascertain the mechanisms
underlying the effects of hUC-MSC-Exos against AD,
purified exosomes were collected from hUC-MSC-
CMs and isolated. Characterization of the exosomes—
including their distribution, morphology, and marker
expression—confirmed  their  successful isolation
(Fig. 6A—C). In our in vitro AD model, co-culturing
hUC-MSC-Exos with HaCaT keratinocytes led to
significant inhibition of chemokine mRNA upregulation,
particularly for CCL5 and CXCL11 mRNA, in the model
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group (Fig. 6D). This suggests that hUC-MSC-Exos
regulate chemokine expression in keratinocytes through
exosomal communication. This regulatory effect on
chemokines may represent an important mechanism by
which hUC-MSC-Exos contribute to AD inhibition.

The STAT3 signaling pathway mediates
hUC-MSC-dependent chemokine regulation

The JAK-STAT signaling pathway plays a pivotal role
in the pathophysiology of AD. KEGG pathway analysis
showed a significant upregulation of the JAK-STAT
signaling pathway in in vitro AD model TNF-a/IEN-y
treatment groups (Fig. 5B). Western blotting showed that
hUC-MSCs decreased p-STAT3 protein levels in mouse
skin tissue (Fig. 7A), and that exosomes reversed the
TNF-o/IEN-y-induced increase in p-STAT3 expression
(Fig. 7B). To further evaluate the regulatory effect of the
JAK-STAT signaling pathway on chemokine regulation,
we assessed the effect of the STAT3 inhibitor, stattic,
on chemokine expression in the in vitro AD model
group. Initially, stattic exerted no significant effect on
HaCaT cell viability (Fig. 7C). However, subsequently,
it reversed the upregulation in chemokine mRNA

c NP
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Fig. 6 hUC-MSC-Exos inhibit chemokine production in keratinocytes. A Images of hUC-MSC-Exos captured using a transmission electron
microscope; black arrows indicate exosomes. B Nanoparticle tracking analysis using Particle Metrix reveals the size and concentration

of hUC-MSC-Exos. C Western blot analysis of the exosome marker proteins, CD63 and TSG101. Full-length blots are presented in Supplementary
Figure. D gRT-PCR analysis of chemokine mRNA expression in HaCaT cells treated with TNF-a/IFN-y (10 ng/mL) or hUC-MSC-Exos (20 pug/mL)

for48 h
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Fig. 7 The STAT3 signaling pathway mediates hUC-MSC-dependent chemokine regulation. A Changes in STAT3 signaling pathway activity

in mouse skin following hUC-MSC treatment. B Western blot analysis of changes in STAT3 signaling pathway activity following treatment

with exosomes. Full-length blots are presented in Supplementary Figure. C Effect of Stattic on HaCaT cell viability. D gRT-PCR analysis of HaCaT
cell-related chemokine mRNA expression following treatment with Stattic (10 pM)

expression, particularly CCL5 and CXCL11 mRNA
expression (Fig. 7D). These findings suggest that hUC-
MSCs regulate chemokine expression via the JAK-STAT
signaling pathway.

Discussion

Regenerative medicine has emerged as a promising
field in dermatology, offering innovative therapeutic
approaches for various skin conditions [24, 25].
Transplanted MSCs significantly improve organ function
and modulate immunity through paracrine signaling
pathways [26, 27]. Based on our confirmation that
subcutaneous hUC-MSC injection ameliorates AD
symptoms in OVA- and DNCB-induced AD models, we
investigated whether hUC-MSC-CM exhibits similar
therapeutic effects. Our findings indicated that hUC-
MSC-CM effectively improves OVA- and DNCB-induced
AD-like skin lesions and reduces serum IgE levels.
Furthermore, we found that hUC-MSC-CM modulated
the expression of chemokines in keratinocytes, thereby
regulating neutrophil chemotaxis at dermatitis sites.
Exosomes, key paracrine effectors, play a pivotal role

in the effects of hUC-MSCs [28]. Extracellular vesicle
subpopulations exhibit significant uniformity, diverse
functions, and intricate compositions. hUC-MSC-
derived exosomes were specifically evaluated in this study
using an in vitro AD model. These exosomes effectively
reduced chemokine production, suggesting that they
could potentially replace hUC-MSCs or hUC-MSC-CM
in AD treatment. In summary, hUC-MSCs hold promise
as effective treatment agents for AD; however, further
studies are needed to validate these findings.

Neutrophils are the most abundant circulating
leukocytes in the body and the first immune cells to
infiltrate the skin in patients with AD [29, 30]. They play
a crucial role in mediating skin damage, itching, pain,
and the inflammatory response in patients with AD
[31, 32]. After production in the bone marrow through
precursor cell differentiation, neutrophils rapidly
migrate to damaged tissues and exert their effects during
inflammatory injury [33]. Keratinocytes are the primary
producers of chemokines in skin tissue; in acute AD
models, they promote neutrophil infiltration in skin
tissue by upregulating the secretion of chemokines,
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such as CCL2 and CCL27 [34, 35]. Neutrophil-related
chemokine expression is significantly high in patients
with AD [30]. Blocking neutrophil chemotaxis using anti-
CXCR2 antibodies effectively inhibits the inflammatory
response [36]. Our findings suggests that hUC-MSCs
may treat AD by inhibiting chemokine expression in
keratinocytes and blocking neutrophil chemotaxis in skin
tissue. Further investigations into the role and regulatory
mechanisms of neutrophils in AD will potentially lead to
breakthroughs in AD immunotherapy.

The JAK/STAT signaling pathway, which is frequently
implicated in cytokine signal transduction, plays a key
role in AD immune dysregulation [37]. It is involved
in cell proliferation, differentiation, apoptosis, and
inflammation, making it a potential target for AD
treatment [38]. Currently, five JAK inhibitors have
been approved globally for AD treatment; however, no
STAT inhibitors have been identified [39]. Our results
showed that hUC-MSCs and their exosomes could
inhibit STAT3 expression, and that STAT inhibition may
reduce chemokine expression in keratinocytes. These
findings suggest that hUC-MSCs may inhibit the JAK/
STAT signaling pathway in keratinocytes via exosomes,
thereby inhibiting chemokine expression and neutrophil
chemotaxis, and exerting a therapeutic effect against AD.

Conclusions

This study demonstrated that subcutaneous hUC-MSC
and hUC-MSC-CM injection significantly improves
AD-like skin symptoms. Further evaluation confirmed
that it may inhibit chemokine expression in keratinocytes
through exosomal regulation of the STAT3 signaling
pathway, thereby blocking neutrophil chemotaxis
and contributing to AD amelioration. Of note, hUC-
MSC-CM was found to be a cell-free alternative for
AD treatment, with comparable efficacy to whole-cell
therapy, providing a promising translational strategy
for AD treatment in clinical practice. These findings
enhance our understanding of AD pathogenesis. In
addition, our several comprehensive safety studies have
been carried out on hUC-MSCs [18, 40-42], directly
supporting the regulatory approval of a new drug clinical
trial (IND) on “Human Umbilical Cord Mesenchymal
Stem Cell Injection” (IND acceptance: CXSL2300670) for
moderate-to-severe AD.
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